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Abstract
Despite being the sum of decentralized and uncoordinated efforts by
heterogeneous groups and individuals, the World Wide Web exhibits a well-
defined structure, characterized by several interesting properties. This structure
was clearly revealed by Broder et al (2000 Graph structure in the web
Comput. Netw. 33 309) who presented the evocative bow-tie picture of the
Web. Although, the bow-tie structure is a relatively clear abstraction of
the macroscopic picture of the Web, it is quite uninformative with respect
to the finer details of the Web graph. In this paper, we mine the inner
structure of the Web graph. We present a series of measurements on the
Web, which offer a better understanding of the individual components of the
bow-tie. In the process, we develop algorithmic techniques for performing
these measurements. We discover that the scale-free properties permeate all
the components of the bow-tie which exhibit the same macroscopic properties
as the Web graph itself. However, close inspection reveals that their inner
structure is quite distinct. We show that the Web graph does not exhibit self
similarity within its components, and we propose a possible alternative picture
for the Web graph, as it emerges from our experiments.
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Figure 1. The bow-tie structure of the Web graph. Reprinted from Computer Networks
(http://www.sciencedirect.com/science/journal/13891286), volume 33, Andrei Broder et al, Graph
structure in the Web, pages 309–320, copyright (2000), with permission from Elsevier.

1. Introduction

In the past decade, the world has witnessed the explosion of the World Wide Web from an
information repository of a few millions of hyperlinked documents into a massive world-wide
‘organism’ that serves informational, transactional and communication needs of people all
over the globe. Naturally, the Web has attracted the interest of the scientific community, and
it has been the subject of intensive research work in various disciplines. One particularly
interesting line of research is devoted to analyze the structural properties of the Web, that is,
understanding the structure of the Web graph [1, 4, 15].

The Web graph is the directed graph induced by the hyperlinks of the Web: the nodes
are the (static) HTML pages, and the edges are the hyperlinks between them, directed from
the page that contains the link to the target of the link. Understanding the structure and the
evolution of the Web graph is a fascinating problem for the community of theoretical computer
science. At the same time it has many practical implications. Knowledge of the Web structure
can be used to devise better crawling strategies [17], perform clustering and classification
[15], improve browsing [5]. Furthermore, it can help in improving the performance of search
engines, one of the major driving forces in the development of the Web. The celebrated HITS
[13] and PageRank [3] algorithms rely on the link structure of the Web to produce improved
rankings of the search results. The knowledge of the macroscopic structure of the Web has
been used in devising efficient algorithms for the computation of PageRank [10, 12].

The first large-scale study of the Web graph was performed by Broder et al [4] and
it revealed that the Web graph contains a giant component that consists of three distinct
components of almost equal size: the CORE, made up of a single strongly connected
component; the IN set, comprised by nodes that can reach the CORE but cannot be reached
by it; the OUT set, consisting of nodes that can be reached by the CORE but cannot reach it.
These three components form the well-known bow-tie structure of the Web graph, shown in
figure 1.4

4 The figure is reproduced from [4].
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The bow-tie picture describes the macroscopic structure of the Web. However, very little
is known about the inner structure of the components that comprise it. Broder et al [4] pose
it as an open problem to study further the structure of those components. Understanding the
finer details of the Web graph is an interesting problem on its own, but it is also important
in practice for improving the performance of algorithms that rely on the link structure of the
Web. Furthermore, it could be useful for refining the existing stochastic models for the Web
[1, 14, 18].

The study of the Web graph poses additional challenges. Typically, the Web graph consists
of millions of nodes and billions of edges. Performing standard graph algorithms (such as
BFS and DFS) on a graph of this size is a non-trivial task since data cannot be stored in main
memory. It is therefore necessary to devise external-memory algorithms [6] that can work
on massive graphs. The challenge is to customize the algorithms to the Web graph, taking
advantage of the specific structure of the Web.

In this paper, we study the finer structure of the Web graph, addressing the open question
raised by Broder et al [4]. We refine the bow-tie picture by providing details for its individual
components. In the process, we develop a suite of algorithms for handling massive graphs.
Our contributions can be summarized as follows:

• We implement a number of external and semi-external memory graph theoretic algorithms
for handling massive graphs, which can run on computers with limited resources. Our
algorithms have the distinct feature that they exploit the structure of the Web in order to
improve their performance.

• We experiment with four different crawls and we observe the same macroscopic properties
previously reported in the literature: the degree distributions follow a power law, and the
graph has a bow-tie structure, although (depending on the crawler) a little different in
shape.

• We study in detail the inner structure of the bow-tie graph. We perform a series of
measurements on the CORE, IN and OUT components. Our measurements reveal the
following surprising fact: although the individual components share the same macroscopic
statistics with the whole Web graph, they have substantially different structure. We suggest
a refinement of the bow-tie picture, the daisy structure of the Web graph, that takes our
findings into account.

The rest of the paper is structured as follows. In section 2, we review some of the basic
graph theoretic definitions, and some of the previous work. In section 3, we outline the
algorithms for handling the Web graph. In section 4, we present our experimental findings.
We conclude in section 5 with a discussion on the implications of our findings, and possible
future experiments.

2. Background

2.1. Graphs and power laws

We will be using various basic graph theoretic definitions and algorithms that can be found in
any graph theory textbook (e.g., [7]). Here, we only remind the reader of the definitions of
strongly and weakly connected components.

A set of nodes S forms a strongly connected component (SCC) in a directed graph, if and
only if for every pair of vertices u, v ∈ S, there exists a path from u to v, and from v to u. A
set of nodes S forms a weakly connected component (WCC) in a directed graph G, if and only
if the set S is a connected component of the undirected graph Gu that is obtained by removing
the directionality of the edges in G.
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We will often talk about power-law distributions which are characteristic of the Web. A
discrete random variable X follows a power-law distribution if the probability of taking value
i is P [X = i] ∝ 1/iγ , for a constant γ � 0. The value γ is the exponent of the power law.

2.2. Related work

The study of the structure of the Web graph has recently been the subject of a large body of
literature. A well-documented characteristic of the Web graph is the ubiquitous presence of
power-law distributions. Kleinberg et al [14] and Barabasi and Albert [1] demonstrated that
the in-degree of the Web graph follows a power-law distribution. Later experiments by Broder
et al [4] on a crawl of 200M pages from 1999 by AltaVista confirmed it as a basic property:
the in-degree of a vertex is distributed according to a power law with exponent γ ≈ 2.1. The
sizes of the SCC components also follow a power law. The out-degree distribution follows an
imperfect power-law distribution.

Broder et al [4] also studied the structure of the Web graph, and presented the bow-tie
picture. They decomposed the Web graph into the following components (figure 1): the
CORE, consisting of the largest SCC in the graph; the IN, consisting of nodes that can reach
the CORE; the OUT, consisting of nodes that are reachable from the CORE; the TENDRILS,
consisting of nodes not in the CORE that are reachable from the nodes in IN, or can reach the
nodes in OUT; the DISC, consisting of the remaining nodes.

Dill et al [9] demonstrated that the Web exhibits self-similarity when considering
‘thematically unified clusters’ (TUCs), that is, sets of pages that are brought together due
to some common trait. Thus the Web graph can be viewed as the outcome of a number of
similar and independent stochastic processes. Pennock et al [18] also argue that the Web is
the sum of stochastic independent processes that share a common (fractal) structure.

The findings about the structure of the Web generated a flurry of research in the field
of random graphs. Given that the standard graph theoretic model of Erdös and Rèny [11]
is not sufficient to capture the generation of the Web graph, various stochastic models were
proposed [1, 14, 18]. Most of them address the fact that the in-degrees must follow a power-
law distribution [1]. The copying model [14] generates graphs with multiple bipartite cliques
[15].

3. Algorithmic techniques for handling the Web graph

This study has required the development of a complete algorithmic methodology for handling
very large Web graphs. As a first step we need to identify the individual components of the
Web graph. For this we need to be able to perform graph traversals. The link structure of
the Web graph takes several gigabytes of disk space, making it prohibitive to use traditional
graph algorithms designed to work in main memory. Therefore, we implemented algorithms
that achieve remarkable performance improvements when processing data that are stored on
external memory. We implemented semi-external algorithms, that use only a small constant
amount of memory for each node of the graph, as well as fully-external algorithms that use an
amount of main memory that is independent of the graph size.

We implemented the following algorithms:

• A semi-external graph traversal for determining vertex reachability using only 2 bits per
node. The one bit is set when the node is first visited, and the other when all its neighbors
have been visited (we say that the node is ‘completed’). The algorithm operates on the
principle that the order in which the vertices are visited is not important. Starting from
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Table 1. Sizes and bow-tie components for the different crawls and the AltaVista graph.

Italy Indochina UK WebBase AltaVista

Nodes 41.3M 7.4M 18.5M 135.7M 203.5M
Edges 1.15G 194.1M 298.1M 1.18G 1.46G

CORE 29.8M (72.3%) 3.8M (51.4%) 1.2M (65.3%) 44.7M (32.9%) 56.4 (27.7%)
IN 13.8K (0.03%) 48.5K (0.66%) 312.6K (1.7%) 14.4M (10.6%) 43.3 (21.3%)
OUT 11.4M (27.6%) 3.4M (45.9%) 5.9M (31.8%) 53.3M (39.3%) 43.1 (21.2%)
TENDRILS 6.4K (0.01%) 50.4K (0.66%) 139.4K (0.8%) 17.1M (12.6%) 43.8 (21.5%)
DISC 1.25K (0%) 101.1K (1.4%) 80.2K(0.4%) 6.2M (4.6%) 16.7 (8.2%)

an initial set of nodes, it performs multiple passes over the data, each time visiting the
neighbors of the non-completed nodes.

• A semi-external breadth first search that computes blocks of reachable nodes and splits
them up in layers according to their distance from the root. In a second step, these layers
are sorted to produce the standard BFS traversal of the graph.

• A semi-external depth first search (DFS) that needs 12 bytes plus one bit for each node in
the graph. This traversal has been developed following the approach suggested by Sibeyn
et al [19].

• An algorithm for computing the largest SCC of the Web graph. The algorithm exploits
the fact that the largest SCC is a sizable fraction of the Web graph. Thus, by sampling a
few nodes of the graph, we can obtain a node of the largest SCC with high probability.
We can then identify the nodes of the SCC using the reachability algorithm. As an end
product we obtain the bow-tie regions of the Web graph, and we are able to compute all
the remaining SCCs of the graph efficiently using the semi-external DFS algorithm.

A software library containing a suite of algorithms for generating and processing massive
Web graphs is available online5. A detailed presentation of some of these algorithms and a
study of their efficiency has been presented in [16]. A complete description of these algorithms
is available in the extended version of this work [8].

4. Experiments and results

We experiment with four different crawls. The first three crawls are samples from the Italian
Web (the .it domain), the Indochina Web (the .vn, .kh, .la, .mm and .th domains) and the
UK Web (the .uk domain) collected by the ‘Language Observatory Project’6 and the ‘Istituto
di Informatica e Telematica’7 using UbiCrawler [2]. The fourth crawl is a sample of the
whole Web, collected by the WebBase project at Stanford8 in 2001. This sample contains
360 millions of nodes and 1.5 billion of edges. In order to eliminate non-significant data,
we pruned the frontier nodes (i.e. the nodes with in-degree 1 and out-degree 0, on which the
crawler has been arrested). The sizes of the crawls are shown in table 1.

4.1. Macroscopic measurements

As a first step in our analysis of the Web graph, we repeat the experiments of Broder et al
[4] on the macroscopic analysis of the graph. We computed the in-degree, out-degree and

5 http://www.dis.uniroma1.it/˜cosin/.
6 www.language-observatory.org.
7 www.itt.cnr.it.
8 http://www-diglib.stanford.edu/testbed/doc2/WebBase/.
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SCC size distributions. As expected, the in-degrees, and the sizes of SCCs follow a power-
law distribution, while the out-degree distribution follows an imperfect power law. All our
measurements are in agreement with the respective measurements of Broder et al [4] for the
AltaVista crawl. More detailed results on the various distributions for the WebBase crawl are
reported in [16].

We also computed the macroscopic structure of the Web graph. We observe a bow-tie
structure. The relative sizes of the components of the bow-tie are shown in table 1, where
we also present the numbers for the AltaVista crawl [4], for the purpose of comparison. The
first observation is that for the Italian, Indochina and UK crawls, the IN and TENDRILS
components are almost non-existent. As a result either the CORE is overgrown (for the
Italian and UK crawls), or the nodes are equally distributed between the CORE and the
OUT component. For the WebBase crawl we observe that the relative size of IN (11%) is
significantly smaller than that observed in the AltaVista crawl, while the OUT component
(39%) is now the largest component of the bow-tie. These discrepancies with the AltaVista
crawl can most likely be attributed to different crawling strategies and capabilities, rather than
to the evolution of the Web. The first three crawls are relatively recent, and all crawls are
generated using a small number of starting points. Unfortunately, large-scale crawls are not
publicly available.

4.2. The inner structure of the bow-tie graph

We now study the fine-grained structure of the Web graph. We are interested in understanding
not only the characteristics of each component individually, but also how the components
relate to each other. For this purpose we label each node with the name of the component to
which it belongs. This gives us five sets of nodes (CORE, IN, OUT, TENDRILS, DISC). For
each such subset we obtain the induced subgraph, resulting in five different subgraphs. For
example, when referring to the IN graph, we mean the graph that consists of the nodes in IN
and all the edges between these nodes.

As a first step in the understanding of the individual components we compute the same
macroscopic measures as for the whole Web graph. We compute the in-degree, out-degree
and SCC size distributions for each of the IN, OUT, TENDRILS and DISC graphs. Figure 2
shows the plots of the distributions for each component and for the whole graph, for the case
of the WebBase crawl. It is obvious that the same macroscopic laws that are observed on the
whole graph are also present in the individual components.

4.2.1. The structure of the IN and OUT components. Given the fact that the in-degree,
out-degree and SCC size distributions in the IN and OUT components are the same as for
the whole Web graph, it is tempting to conjecture that the Web has a self-similar structure.
That is, the bow-tie structure repeats itself inside the IN and OUT components. Dill et al [9]
demonstrated that the web exhibits self-similarity when considering ‘thematically unified’ sets
of web pages. These subsets are structurally similar to the whole Web. Similar observations
are made by Pennock et al [18]. However, the subsets considered by these previous works
are composed of nodes that may belong to any of the components of the bow-tie graph. The
question we are interested in is, whether such self-similarity appears when considering the
individual components of the bow-tie graph.

The first indication that the self-similarity conjecture is not true comes from the fact that
there is no large SCC in the IN and OUT components. For the OUT component, in all crawls,
the largest SCC is only a few thousands of nodes. Given that the size of the OUT component
is in the order of millions, the largest SCC is staggeringly small. Furthermore, this is also the
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(a) In-degree distributions
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Figure 2. Macroscopic measures for all components. (a) In-degree distributions, (b) Out-degree
distributions and (c) SCC size distributions.

second largest SCC in the graph, which, compared to the largest one (the CORE), is minuscule.
We observe a similar phenomenon for the IN component. For the WebBase graph (which is
the most interesting case, since the IN component is a non-trivial fraction of the graph) the
largest SCC in the IN component is less than 6000 nodes. Detailed numbers about the size of
the largest SCC in the IN and OUT components are given in table 2.

Therefore, it appears that there exists no sizable SCC in the IN and OUT components
that could play the role of the CORE in a potential bow-tie. However, it is still possible that
there exists a giant weakly connected component (WCC) in each component. We therefore
computed the WCCs of the two sets. Surprisingly, we discovered that there is no giant WCC
in either of the two components. In fact, there is a large number of WCCs per component and
their sizes follow a power-law distribution. Figure 3(a) shows the WCC size distribution for
the WebBase graph. Statistics for all graphs are reported in table 2. Most of the WCCs are of
size one. The singleton WCCs comprise 10–22% of the IN component (with the exception of
Indochina), and 20–45% of the OUT component. On the other hand, the largest WCC is never
more than 30% of the component it belongs to, which is small compared to the giant WCC
in the Web graph, which contains more than 90% of the nodes. For the WebBase graph, the
largest WCC in the IN component consists of just 1% of the nodes, while the largest WCC in
the OUT component consists of 28% of the nodes.

We also investigate how the nodes in the largest WCCs in the IN and OUT components
are connected to see if they organized in a bow-tie shape. Our investigation revealed that
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Table 2. Statistics for the IN, OUT and CORE components for each crawl.

Italy Indochina UK WebBase

The IN component
Nodes in IN 13.8K (0.03%) 48.5K (0.66%) 312.6K (1.69%) 14.4M (11%)
Max SCC 1590 7867 4171 5876
Number of WCCs 1633 117 62K 3.68M
Max WCC 4085 (29.5%) 13.2K (27.2%) 8246 (2.7%) 197.5K (1.3%)
Singleton WCCs 1543 (11.15%) 63 (0.13%) 56K ( 17.89%) 3.2M (22.46 %)

The OUT component
Nodes in OUT 11.4M (27.6%) 3.4M (45.9%) 5.9M (31.8%) 53.3M (39%)
Max SCC 19,170 39 283 26 525 9349
Number of WCCs 3.73M 7296K 1.97M 25.4M
Max WCC 1.43M (12.52%) 335.9K (9.85%) 457.4K (7.75%) 14.94M (28.01%)
Singleton WCCs 3.49M (30.6%) 672K (19.71%) 1.84M (31.11%) 24.48M (45.91%)

The CORE component
Nodes in CORE 29.8M (72.3%) 3.8M (51.4%) 1.2M (65.28%) 44.7M (33%)
Entry points 10.2K (0.03%) 2.3K (0.06%) 106.3K (0.88%) 2.6M (5,87%)
Exit points 15.6M (52.2%) 2.3M (59.6%) 4.8M (39.8%) 29.6M (72.03%)
Bridges 6.25K(0.02%) 1.5K (0.04%) 61.8K (0.51%) 2M (4.58%)
Connectors 1.7M (5.71%) 164.2K (4.32%) 537.9K (4.45%) 2.96M (6.63%)
Petals 325.3K (1.09%) 52.5K (1.38%) 138K (1.14%) 1.4M (3.14%)

Table 3. IN and OUT depth.

Italy Indochina UK WebBase

Depth IN 2 11 15 8
Depth OUT 26 21 25 580

starting from the largest SCC in the WCC, we can create a bow-tie that is no more than 15%
of the WCC (for the Italian Web), and usually less than 5%. The rest belongs to the DISC
component. (Note that a node that points to the tendrils coming out of IN, or is pointed to by
those going into OUT, belongs to DISC, although it is still weakly connected to the graph).
This suggests that the WCC consists of multiple small atrophic bow-ties that are sparsely
interconnected with each other.

In order to better understand how the nodes in IN and OUT are arranged with respect to
the CORE, we performed the following experiment. We condensed the CORE in a single node
and we performed a forward and a backward BFS. This allows us to split the nodes in the IN
and OUT components in levels depending on their distance from the CORE. The depths of the
components are shown in table 3. In all graphs, the depths of the components are relatively
small. Furthermore, most nodes are concentrated close to the CORE. Typically, about 80–90%
of the nodes in the OUT component are found within the first five layers. For the WebBase
graph, although the OUT is much deeper, with 580 levels, more than 58% of its nodes are at
distance 1 from the CORE, and 93% are within distance 5. Furthermore, after level 305 there
exists only a single chain of nodes that extends until level 580, making the effective depth of
the OUT 305. The node distributions, level by level, for the WebBase graph are shown in
figures 3(b) and (c), for the IN and OUT sets respectively. The plots are in logarithmic scale.

Therefore, we conclude that the IN and OUT components are shallow and highly
fragmented. They are comprised of several sparse weakly connected components of low
depth. Most of their volume consists of nodes that are directly linked to the CORE.
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Figure 3. Characteristics of the IN and OUT components. (a) Distribution of WCC sizes per
component, (b) Distribution of IN nodes level by level and (c) Distribution of OUT nodes level by
level.

4.2.2. The structure of the CORE. As a first step in the study of the CORE graph, we examine
its relation with the IN and OUT components. We define an entry point to the CORE to be
a node that is pointed to by at least one node in the IN component, and an exit point to be a
node that points to at least one node in the OUT component. A bridge is a node that is both
an entry and an exit point. The number of entry and exit points is shown in table 2. It is
interesting to observe that a large fraction of the entry points act like bridges. Furthermore,
with the exception of the UK crawl, the majority of the nodes in the CORE is connected to
the ‘outside’ world. In the WebBase crawl, this number is around 80% of the whole CORE,
while the ‘deep CORE’ consists of a little more than 20%.

We also compute the in-degree distribution of the entry points when we restrict the source
of the links to be in the IN component, and, as expected, we observe a power law. This implies
that most nodes ‘serve’ as entry points to just a few nodes in the IN component, while there
exist a few nodes that serve as entry points to a large number of IN nodes. Similar distributions
are obtained when we consider the out-degree distribution of the exit points, restricted to the
OUT component.

We then study the connectivity of the CORE. We first look for nodes that are loosely
connected to the CORE. We define a connector to be a node of the CORE that has a single
in-coming and out-going link. A connector forms a petal if the source of the incoming link,
and the target of the out-going link are the same node. Large number of connectors would
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Table 4. Sensitivity of the CORE under targeted attacks.

(a) Deleting nodes with high total degree (b) Deleting nodes with high in-degree and out-degree

Deg Del Max SCC Max SCC (%) SCC num In-deg Del Out-deg Del Total del Max SCC Max SCC (%) SCC num

50 000 9 44.2M 98.9 81K 4000 1.1K 233 1,154 2,263 42.2M 94.4 595K
21 500 39 43.7M 97.9 175K 2600 9.9K 185 10K 20.6K 39.8M 89.0 1.75M
10 000 199 43.2M 96.6 285K 1750 26K 158 25K 51K 37M 82.9 3M
4000 1.1K 42.3M 94.7 505K 1000 52K 130 54K 105K 33.7M 75.5 4.75M
1000 55K 35.1M 78.6 3.7M 500 112K 105 108K 219K 29.4M 66.1 7M
500 120K 31M 69.6 5.7M 225 259K 82 227K 487K 23.5M 53.3 10M
100 1.03M 14.8M 34.6 14.7M 120 518K 62 499K 949K 17.8M 40.8 13M

imply weak connectivity of the CORE. The number of connectors is shown in table 2, and it
is on average around 5%. Of these 20–45% are petals. Therefore, connectors are only a small
part of the CORE.

In order to further understand the connectivity of the CORE, we test the resilience of the
CORE to targeted attacks by performing the following experiment. For some k we delete all
nodes from the CORE that have total degree (in-degree plus out-degree) at least k. We then
compute the size of the largest SCC in the resulting graph. Table 4(a) shows how the size of
the largest SCC changes as we decrease k, and we increase the number of deleted nodes for
the case of the WebBase graph. Similar trends are observed in the other crawls. We observe
that the threshold on the total degree must become as low as 100 in order to obtain an SCC of
size less than 50% of the CORE.

We note that there is a large discrepancy between the values of the in-degrees and out-
degrees in the Web graph. The highest in-degree is close to 566K, while the highest out-degree
is just 536. Note that an upper-bound on the out-degree may be imposed by the crawler, if it
limits the number of outgoing links of a page that it explores. Therefore, it may be the case
that when deleting the nodes with high total degree, we only delete nodes with high in-degree.
We experiment with a different kind of attack that removes (approximately) k nodes with the
highest in-degree and k nodes with the highest out-degree. The results are shown in table 4(b).
The CORE remains resilient even against this combined attack. An interesting observation
while performing this experiment was that the nodes with the highest in-degree and the nodes
with the highest out-degree are quite distinct. Actually, the correlation between the in-degree
and out-degree is close to zero. It appears that nodes that are strong hubs in the CORE are not
also strong authorities.

There are two ways to interpret these results. The first is that there are no obvious failure
points in the CORE, that is, strong hubs or authorities that pull the rest of the nodes together,
and whose removal from the graph causes the immediate collapse of the network. In order to
disconnect the CORE you need to remove nodes with sufficiently low degree. On the other
hand, note that we managed to reduce the largest SCC to 35–40% of the original by removing
about 1M nodes. However this is less than 1% of the total nodes. In that sense the CORE is
vulnerable to targeted attacks.

5. Discussion and future work

In this paper, we undertook a study of the Web graph at a finer level. We observed that the
ubiquitous presence of power laws describing several properties at a macroscopic level does
not necessarily imply self-similarity in the individual components of the Web graph. Indeed,
the different components have quite distinct structure, with the IN and OUT being highly
fragmented, while the CORE being well interconnected.
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Figure 4. The daisy structure of the Web.

Our work suggests a refinement of the bow-tie pictorial view of the Web graph [4]. The
bow-tie picture seems too coarse to describe the details of the Web. The picture that emerges
from our work can better be described by the shape of a daisy (figure 4): the IN and OUT
regions are fragmented into large number of small and shallow petals (the WCCs) hanging
from the central dense CORE.

It would be interesting to obtain larger, and more ‘realistic’ crawls, and perform the same
measurements to verify our hypothesis. Our current results are sensitive to the choices and
limitations of the crawlers, and it is not clear if the available crawls are representative of
the actual Web graph. Unfortunately, there are no publicly available crawls that have been
collected with the aim of validating our hypothesis on the structure of the Web graph. We plan
in the future to collect crawls with this goal in mind.

A deeper understanding of the structure of the Web graph may also have several
consequences on designing more efficient crawling strategies. The fact that IN and OUT
are highly fragmented may help in splitting the load between different robots without much
overlapping. Moreover, the fact that most of the vertices are at few hops from the CORE may
explain why breadth first search crawling is more effective than other crawling strategies [17].

Our work motivates further experiments on the Web graph. It would be interesting to
devise efficient algorithms for estimating the clustering coefficient, a commonly used measure
for connectivity. Furthermore, further exploration of the structure of the CORE is necessary
to gain a deeper understanding. Possible measurements could include spectral properties, or
clustering and community discovery. As a concluding remark, we observe that we are still very
far from devising a theoretical model that is able to capture the finer connectivity properties
of the Web graph.
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